

Fachbereich Physik

Institut für Physik Kondensierter Materie Prof. Dr. Benno Liebchen

Institut für Kernphysik Prof. Ph. D. Achim Schwenk

Physikalisches Kolloquium

Title: Exploring nanoscale van der Waals magnetism using

single spin microscopy

Speaker: Prof. Dr. Patrick Maletinsky,

University of Basel, Switzerland

Date & time: Friday 14.11.2025, 2 pm

Location: ZKS-Uhrturmhörsaal, S2|08, R. 171, Hochschulstraße 4

Host: Prof. Dr. Bernhard Urbaszek

Abstract:

Quantum two-level systems offer attractive opportunities for sensing and imaging, especially at the nanoscale.

In the almost twenty years since its inception, this idea [1] has advanced from proof of concept [2] to a mature quantum technology [3], with broad fields of applications in physics, materials engineering, life-sciences, and beyond. In this talk, I will present the founding principles and key engineering challenges in the field and highlight particularly rewarding applications of single spin-based quantum sensors. A particular focus will lie on new insights these sensors bring to mesoscopic condensed-matter physics, such as superconductors [4] or novel magnetic materials.

Here, I will focus on the use of single-spin quantum sensors to study and engineer atomically thin "van der Waals" magnets [5-7] - an emerging class of magnetically ordered systems that combine fundamental and practical interests and which so far were notoriously

hard to address due to their weak magnetization and nanoscale spin-textures.

I will conclude with an outlook on future developments of quantum sensors, such as their use in studying dynamical phenomena in quantum materials [8] or their applications under extreme conditions, such as Teslarange magnetic fields, or millikelvin temperatures, where new exciting applications wait to be explored.

- [1] B. Chernobrod and G. Berman, J. of Applied Physics 97, 014903
- [2] G. Balasubmaranian et al., Nature 455, 644; J. Maze et al., Nature 455, 644
- [3] N. Hedrich et al. P.R. Appl., 14, 64007; P. Appel et al., Rev. Sci. Instr. 87, 63703; Qnami.com
- [4] L. Thiel et al., Nature Nanotechnology 11, 677
- [5] C. Gong and X. Zhang, Science 363, 706; M. Gibertini et al., Nature Nano. 14, 408
- [6] L. Thiel et al., Science 364, 973
- [7] F. Tabataba-Vakili et al., Nature Comm. 15, 4735;

Tschudin et al., Nature Comm. 15, 6005

- C. Pellet-Mary et al. arXiv:2503.04922
- [8] J. Rovny et al., Nature Reviews Physics 6, 753

